

2QD0225T12xx-3L 驱动器

特征	RoHS
• 双通道 IGBT 驱动器	COMPLIANT
• 单通道驱动功率 2W,峰值电流 ±25A	
 兼容 5V/15V 输入逻辑 	
· 集成隔离 DC/DC 电源	第 09 页
• 集成原边/副边电源欠压保护	第 09 页
• 集成 VCE 短路保护	第10页
• 集成逻辑开关时序	第10页
• 集成故障关断时序	第10页
• 集成软关断	第11页

主要参数	
Vcc	15V
VG	+15V, -10V
P 最大值	2W
IG 最大值	±25A
fs 最大值	20kHz
ТА	-40°C ~85°C
绝缘耐压	5kV

描述

2QD0225T12xx-3L 是一款基于青铜剑自主开发的 ASIC 芯片设计而成的双通道紧凑型驱动器,针对 I型三电平小功率应用设计而成。满足 I型三电平所要求的正常开关逻辑以及故障时序关断逻辑功能。

2QD0225T12xx-3L适用1200V及以下的IGBT模块。 此驱动器体积小,功能全,运用灵活,外围电路简单。 搭配合适的外围电路可支持多拓扑结构以及多并联方案 的运用。

典型应用

- 风电变流器
- 光伏逆变器
- 储能变流器
- 电机驱动

机械尺寸

机械尺寸图:参见第12页

原理框图

2QD0225T12xx-3L Driver

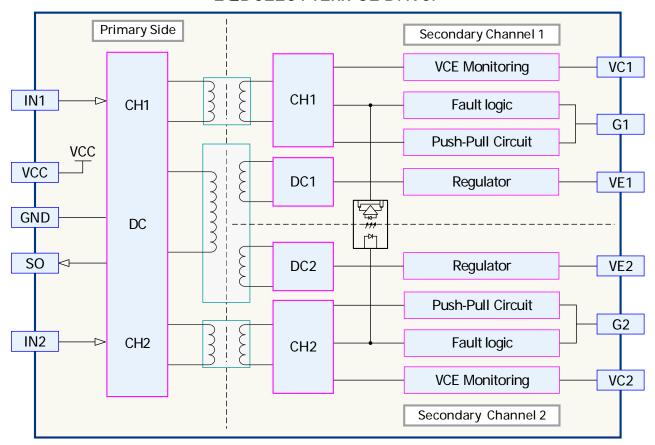


图 1. 2QD0225T12xx-3L 原理框图

典型应用图

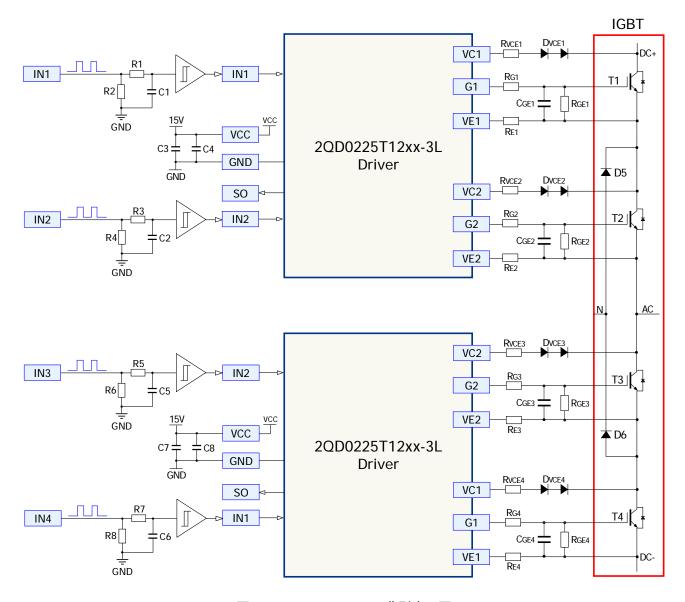


图 2. 2QD0225T12xx-3L 典型应用图

接口定义

P1端子接口定义

管脚	符号	说明	管脚	符号	说明
1	GND	信号 / 功率地	4	IN2	2 通道 PWM 信号输入
2	IN1	1 通道 PWM 信号输入	5	VCC	+15V 电源输入
3	GND	信号 / 功率地	6	SO	故障信号输出

注: 默认 2.54mm 间距 2*3P 双排针。

P2端子接口定义

管脚	符号	说明	管脚	符号	说明
1	G1	1 通道 G 级	2	G1	1 通道 G 级
3	VC1	1 通道 VCE 检测输入	4	VC1	1 通道 VCE 检测输入
5	VE1	1 通道 E 极	6	VE1	1 通道 E 极

注: 默认 2.54mm 间距 2*3P 双排针。

P3端子接口定义

管脚	符号	说明	管脚	符号	说明
1	G2	2 通道 G 级	2	G2	2 通道 G 级
3	VC2	2 通道 VCE 检测输入	4	VC2	2 通道 VCE 检测输入
5	VE2	2 通道 E 极	6	VE2	2 通道 E 极

注: 默认 2.54mm 间距 2*3P 双排针。

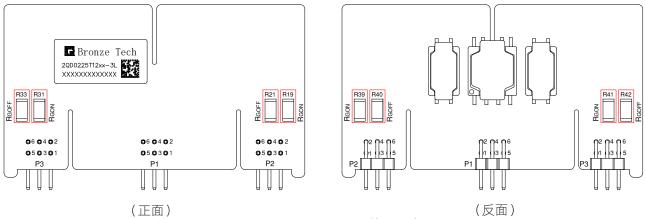


图 3. 2QD0225T12xx-3L 接口示意图

参数

绝对限值

参数	最小	最大	单位
IN1, IN2, SO to GND	-0.5	15.5	V
供电电源	0	16	V
门极驱动功率 1)		2	W
IGBT 门极电荷		7.0	uC
最大开关频率		20	kHz
运行温度 TA	-40	85	°C
存储温度 Ts	-40	85	
注:1)在 TA 允许温度范围内,单通道最大输出功率。			

供电电源

环境温度 TA=25°C,除非另有说明。

参数	测试条件	最小	典型	最大	单位		
供电电压 Vcc	VCC to GND	14.5		15.5	V		
静态电流 Iccq	Vcc=15V,空载		60		mA		
负载电流	Vcc=15V,电容负载 100nF,fsw=8kHz,50% 占空比		160		IIIA		
副边全压 Vcco ¹⁾	VISOx to COMx	24	25	26			
副边正压 V+	VISOx to VEx	14.5	15	15.5	V		
副边负压 V-	COM to VEx	-11	-10	-9			
支撑电容	VISOx to VEx		14.1		uF		
火 痔 电台	COM to VEx		14.1	·	uГ		
注: 1) 副边全压/正压	注: 1) 副边全压 / 正压 / 负压典型值为空载测试值。						

输入

环境温度 TA=25℃,除非另有说明。

参数			测试条件	最小	典型	最大	单位
逻辑输入阻抗	2QD0225T12A0)-3L	VIN=5V	5.7		kΩ	
这相机八阳加	2QD0225T12C)-3L	VIN=15V		5.7		M12
逻辑输入电流	2QD0225T12A0)-3L	Vcc=15V, Vin=5V		0.87		mA
这再拥入电流	2QD0225T12C0)-3L	Vcc=15V, ViN=15V		2.6		IIIA
	工、多八寸作 ハ	2 通道		2.8	,		
2QD0225T12A0-3L	│ 开通门槛 VINH │	1 通道	Vcc=15V, Rin1=1kΩ, Rin2=4.7kΩ Rin3=1kΩ, Rin4=4.7kΩ	4.0			
输入电压 Vin 1)	关断门槛 VinL	2 通道				1.9	
		1通道			,	2.5	V
	T /3/71//	2 通道		2.6			V
2QD0225T12C0-3L	│ 开通门槛 VINH	1 通道	Vcc=15V,	9.8	,		
输入电压 VIN 1)	关断门槛 Vinl	2 通道	RIN1=1k Ω , RIN2=4.7k Ω RIN3=1k Ω , RIN4=4.7k Ω			2.2	
	大町 J恒 VINL	1 通道				6.8	
注: 1) 输入电压 VIN 请参	参考"INx输入电路图	₹"。		<u>.</u>			

输出

环境温度 TA=25°C, Vcc=15V, 除非另有说明。

参数		测试条件	最小	典型	最大	单位
	开通 ON-State	空载		15		V
│ 门极输出电压 VG	关断 OFF-State	空载		-11		V
门枫收估中沟上。	开通 ON-State	RGON=1.1Ω,电容负载 100nF		12.5		А
门极峰值电流 IG peak	关断 OFF-State	Rgoff=1.1Ω,电容负载 100nF		12.5		А
		2QD0225T12A0-3L,Rso=4.7k $\Omega^{1)}$		5		
SO 输出电压 Vso	正常状态	2QD0225T12C0-3L,Rso=4.7k Ω $^{1)}$		15		V
	保护状态				0.7	
注:1)驱动核内部故障上拉电阻,上拉到 5V 或 15V,默认为 4.7kΩ。						

时序

环境温度 TA=25°C, VCC=15V, 除非另有说明。

参数				测试条件	最小	典型	最大	单位
		开通延时 td(on)	2 通道			1750		
	2QD0225T12A0-3L	一开地延り ta(on)	1 通道			2850		
	2QD0223112A0-3L	关断延时 td(off)	2 通道	 电容负载 100nF		1600		
 传输延时 ¹⁾	n . + 1)	大町延町 ta(on)	1 通道	fs=8kHz		500		200
	开通延时 td(on) 2QD0225T12C0-3L	2 通道	Rgon=1.1Ω		350		ns	
			1 通道	RGOFF= 1.1Ω		1450		
		- 1 2 通道	2 通道			1600		
			1通道			500		

注: 1) 开通传输延时为输入信号上升沿 10% 到门极信号上升沿 10%,关断传输延时为输入信号下降沿 90% 到门极信号下降沿 90%。

保护

环境温度 TA=25℃,除非另有说明。

参数	数	测试条件	最小	典型	最大	单位
原边欠压保护	触发 Vccuv+	Vcc=15V, VCC-GND		12.5		
阈值电压 ¹⁾	恢复 Vccuvr+	VCC-13V, VCC-GND		13.4		
副边正压欠压	触发 Vuv+	Vac-15V VICO VI		12		
保护阈值电压1)	恢复 Vuvr+	Vcc=15V,VISO-VE		12.4		V
副边负压欠压	触发 Vuv-	V 15V VE COM		4.4		
保护阈值电压1)	恢复 Vuvr-	Vcc=15V, VE-COM 4.		4.5		
短路保护阈值电应	立 VREF	Vcc=15V,Rref=150k Ω	11.2			
短路保护	2 通道	Ra=5.1kΩ,Ca=680pF,空载		10		
响应时间 tsc ²⁾	1 通道	Ra=10kΩ,Ca=390pF,空载 7			us	
保护锁定时间 tB		Rτ _B =150kΩ		95		ms
软关断功能 Vcc=15V			2.0		us	

注: 1) 欠压保护逻辑参见电源及电源监控章节。

²⁾ 外围电路采用二极管检测的方式将检测信号反馈到驱动核 VCx 引脚。

电气绝缘

运行温度 TA=25℃,除非另有说明。

参数	数值	单位				
绝缘耐压(50Hz,1min,有效值)	原边 - 副边	5.0	kV			
纪练顺压(JOHZ,IIIIII,有双值)	副边 - 副边	3.0	K.V			
耦合电容	原边 - 副边	10	nE			
柄口 七台	副边 - 副边	12	pF			
电气间隙 ¹⁾	原边 - 副边	7.0				
	副边 - 副边	3.7	mm			
作电距离 ¹⁾	原边 - 副边	8.6	mm			
爬电距离	副边 - 副边	9.8				
注: 1) 电气间隙及爬电距离依据 IEC 61800-5-1 标准设计。						

电磁兼容

运行温度 TA=25°C,除非另有说明。

参数		数值	单位
静电防护(IEC 61000-4-2)	接触放电	±4	
	空气放电	±8	kV
电快速瞬变脉冲群抗扰度 ¹⁾ (IEC 61000-4-4)		±2	
注: 1) 在驱动电源端口测试。			

订货信息

型号	输入逻辑	IGBT 电压等级	插针长度	三防漆
2QD0225T12A0-3L	5V	1200V	4.5mm	有
2QD0225T12C0-3L	15V	1200V	4.5mm	有

功能描述

电源及电源监控

驱动器配有隔离 DC/DC 电源,可实现原边电源和副边电源之间的电气隔离,基本原理框图【见图 4】。

驱动器的原边及两个通道的副边都分别配备有电源监控电路,并实施欠压保护。

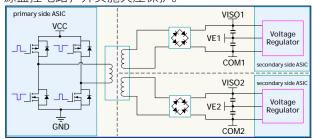


图 4. 电源原理框图

原边电源监控:

原边欠压保护电路对电源电压 Vcc 进行监控并实施欠压保护动作。当 Vcc 逐渐降低至欠压保护触发电压 Vccuv 时将触发欠压保护。驱动器将锁定在关断状态;同时输出保护信号 SO【见图 5】。

当 Vcc 恢复到欠压恢复值 VccuvR,驱动器将继续保持保护状态一个锁定时间 tB,SO 才能恢复为高,驱动器恢复正常工作。

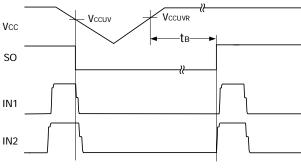


图 5. 原边欠压保护逻辑图

副边电源监控:

副边电压在供电电压降低或负载超载情况下,会发生电压下降。当副边电压全压 Vcco(VISO 至 COM 下同)下降时,驱动器会优先稳住正压 V+(VISO 至 VE 下同)为 +15V,负压 V-(COM 至 VE 下同)逐渐抬升。当 V-抬升到 -5V 后,开始稳住负压,正压 V+ 开始跟随全压 Vcco 下降。当 V+ 下降至欠压保护阈值 Vuv+,将启动副边欠压保护。

副边欠压保护首先会将本通道驱动锁定在关断状态,确保对应 IGBT 关断。同时向原边发送信号,使得原边输出保护信号 SO。

此时,其他通道也会锁定在关断状态,输出保护信号 SO 会被置低。当 Vcco 恢复后,驱动器会先恢复正压再恢复负压,且 SO 将继续锁定一个 tB 时间后恢复为高,副边欠压故障才能解除。

副边电压调节和欠压保护逻辑【见图 6】。

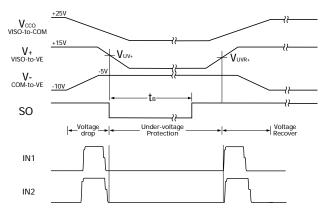


图 6. 副边欠压保护逻辑图

IGBT的开通和关断

当需要关断 IGBT 时,驱动器内部芯片内的 Qon 管打开,Qoff 管关闭,通过开通门极电阻 RGON 对 IGBT 的门极进行充电,使 IGBT 开通【见图 7】。

当需要关断 IGBT 时,驱动器内部芯片内的 QoFF 管打开,QoN 管关闭,通过关断门极电阻 RGOFF 对 IGBT 的门极进行放电,使 IGBT 关断【见图 7】。

门极电阻 RGON 和 RGOFF 的选择,用户可咨询我们技术支持来进行设置,并进行出厂预配置。在安装到对应的 IGBT 模块上时,请确保已安装上合适的门极电阻。



图 7. 门极驱动电路图

触发信号 INx 输入

触发信号由 INx 端口输入,默认状态 RIN1/RIN3为 $1k\Omega$ 电 阻,RIN2/RIN4为 $4.7k\Omega$ 电 阻,CIN1/CIN2为 100pF 电容。

需改变输入信号电平时,调整斯密特触发器的供电电源,即可改变输入信号的开通门槛 VINH 和关断门槛 VINL。

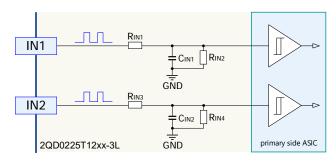
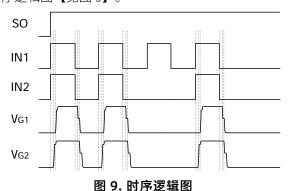



图 8. INx 输入电路

正常开关时序

驱动器上下管可满足 I 型三电平正常开关时序的要求,任何时刻内管先于外管开通,延迟于外管关断(内外管开关延迟时间可设定),且只有在内管有开通信号的前提下,外管才能开通,否则外管输入信号被锁定。时序逻辑图【见图 9】。

IGBT短路保护

驱动器的 IGBT 短路保护使用 VCE 检测电路【见图 10】,两个通道各自独立。短路保护功能只在 IGBT 开通的时候有效;在 IGBT 关断状态,触发信号会将 QCE 打开,使得 VCEDT 钳位在 COMx (相对 VEx 为 -10V 左右),比较器不动作。

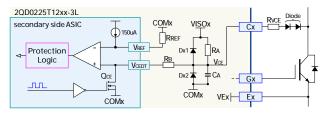
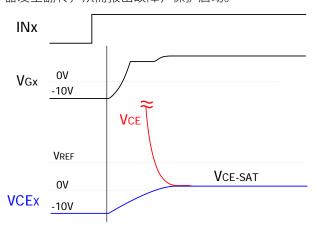
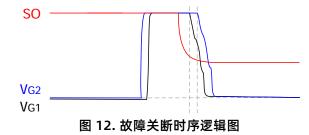


图 10. 短路保护检测原理框图

当驱动器执行 IGBT 正常开通动作时,传输到副边的触发信号会将 QCE 关断,释放 VCEDT 钳位状态。此时 IGBT 的 VCE 仍处于高水平,将通过 RA 电阻对 CA 电容进行充电,使得 VCEDT 电平逐渐抬升。随后 IGBT 开通,VCE 迅速下降至 VCE-SAT,VCEDT 也随之通过二极管放电至 VCE-SAT【见图 11】。由于 VCE-SAT 远低于保护触发值 VREF,比较器不动作,保护不启动。

在 IGBT 发生短路时,IGBT 的集电极和发射极两端的电压很高,将通过 R_A 电阻对 C_A 电容进行充电,使得 VCEDT 电平逐渐抬升,从而使 VCEDT > VREF,比较器发生翻转,从而报出故障,保护启动。




图 11. 正常开通短路监测信号波形

故障时序关断:

驱动器内外管可满足 I 型三电平故障时序关断功能的要求。

当内管检测到故障时,内管不会立即进行软关,而是延迟一段时间进入软关,目的是将故障信息反馈给外管,先让外管进行软关断,然后再让内管进行软关。同时向原边发出故障信息,将原边 SO 脚输出拉低,以表达出保护状态。保护状态将会锁定一个 tB 时间,然后自动恢复到正常状态。

当外管检测到故障时,外管会立即进行软关断, 同时向原边发出故障信息进行封波,此情况下内管只能 通过原边封波进行硬关断;但因外管已经执行软关断, 短路电流被切断或下降到很小,此时内管再进行硬关断 的过压风险很低。

一类短路保护:

当 IGBT 发生一类短路(即直通)时,由于直通电流增长很快,IGBT 将迅速退饱和,VCE 很快回到高位。因此 CA 将会一直充电,使得 VCEDT 一直增长直到钳位至 VISOx(相对 VEx 为 +15V)。在此过程中,VCEDT 会越过 VREF,使得比较器翻转,从而启动短路保护逻辑。

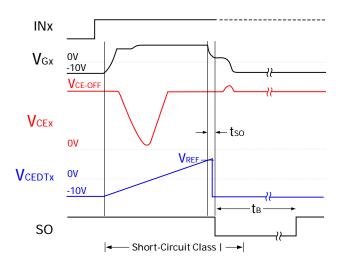


图 13. 一类短路保护逻辑图

二类短路保护:

当 IGBT 发生二类短路(相间短路)时,由于短路 回路阻抗较大,电流增长较缓慢。IGBT 仍能正常进入 饱和状态,然后随着短路电流的增加,VcE 逐渐增加直 至退饱和【见图 14】。驱动器只有在 IGBT 退饱和时才 能检测出短路状态,启动短路保护并执行故障时序关断 逻辑。因此,二类短路保护的响应时间会比一类短路保护响应时间要更长。

当 IGBT 在低母线电压下发生直通短路时,由于母 线电压低导致直通电流较小,IGBT 也会呈现与二类短 路保护相同的特征,相应的保护响应时间也会加长。

注意: 二类短路时,由于短路回路阻抗随机性较大,使得 IGBT 退饱和时刻不确定性较大。因此在 IGBT 保护动作前,有可能已产生较大的热量损耗而导致 IGBT 损坏。即,此种状态下驱动器短路保护并不能保证 IGBT 不损坏,系统需辅以过流保护等其他手段,以保障 IGBT 的安全。

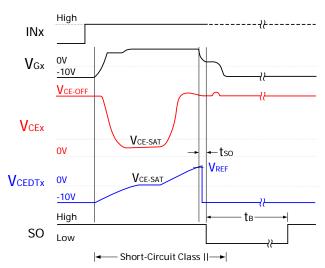


图 14. 二类短路保护逻辑图

软关断功能

由于杂散电感的存在,IGBT 在 发生短路保护关断时会产生较大的尖峰电压,为抑制该尖峰电压,并不影响正常工作时的关断速度,就需要加入软关断功能。驱动器副边芯片内置软关断功能,当出现故障时,通过对门极电压的控制实现软关断来保护 IGBT。软关断时间固定为 2.0us,当门极电压下降到 0V 时,门极会执行硬关断。

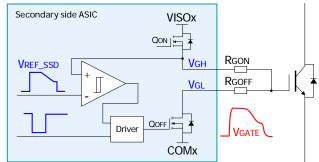


图 15. 软关断示意图

机械结构图

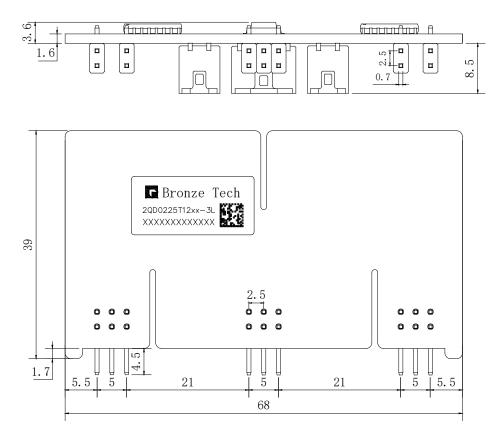


图 16. 2QD0225T12xx-3L 机械结构图

注: 1) 图示单位为 mm;

2) 图中公差符合 ISO 2768-1。

版本说明

版本号	变更内容	修订日期
V1.0	新发布	2024-10-09

注意事项

IGBT 模块和驱动器的任何操作,均需符合静电敏感设备保护的通用要求,请参考国际标准 IEC 60747-1/IX 或欧洲标准 EN100015。为保护静电感应设备,要按照规范处理 IGBT 模块和驱动器(工作场所、工具等都必须符合这些标准)。

🔦 如果忽略了静电保护要求,IGBT 和驱动器可能都会损坏!

- 驱动器上电前,请确认驱动器和控制板连接可靠,无空接、虚接、虚焊现象。
- 驱动器安装后,其表面对大地电压可能会超过安全电压,请勿徒手接触!

使用中,可能危及生命,务必遵守相关的安全规程!

免责声明

青铜剑技术提供的技术和可靠性数据(包括数据手册等)、设计资源(包括 3D 模型、结构图、AD 模型)、应用指南、应用程序或其他设计建议、工具、安全信息和资源等,不包含所有明示和暗示的保证,包括对交付、功能、特定用途、适用性保证和不侵犯第三方知识产权的保证。

这些资源旨在为使用青铜剑技术产品进行开发的熟练工程师提供。为您全权负责:

- (1) 为您的产品选择适当的青铜剑技术产品;
- (2) 设计、验证和测试您的产品;
- (3) 确保您的产品符合适用的要求。

青铜剑技术保留随时修改数据、文本和资料的权力,恕不另行通知。

请随时访问青铜剑技术网站 www.qtitec.com 或微信公众号,以获取最新的资料。

青铜剑技术授权您仅在应用青铜剑技术产品的开发过程,使用相应的资源;禁止以其他方式复制和展示这些资源。青铜剑技术没有通过这些资源,授予任何青铜剑技术的知识产权或第三方知识产权许可。

对于因您使用这些资源而引起的任何索赔、损害、损失和成本,青铜剑技术不承担任何责任,并且有权追偿因 侵犯知识产权而造成的损失。

青铜剑科技集团|深圳青铜剑技术有限公司

官网:www.qtjtec.com 技术电话:+86075533379866 技术邮箱:support@qtjtec.com

微信公众号