

BTD3011x

Single-Channel Isolated Gate Driver

1.Features

- Isolation voltage up to 5000Vrms
- Peak output current up to $\pm 15A$
- CMTI=150kV/µs Minimum
- Maximum switching frequency 75kHz
- Secondary-side supply up to 28V
- Primary-side and secondary-side power supply undervoltage lockout (UVLO)
- Compatible with 3.3V, 5V input
- Short circuit protection and soft shut down integrated
- Voltage regulator integrated for secondary-side power supply
- SOW-16 (wide-body) package
- Operating Temperature -40~125°C

3.Description

BTD3011x is a single channel gate driver with galvanic isolation provided using magnetic coupling. The peak output drive current is \pm 15A. The SOW-16 package enables an isolation voltage of 5000Vrms. Short circuit protection, soft shut down and primary/secondary side undervoltage lockout (UVLO) are provided. Voltage regulator is integrated for the secondary-side supply. the peripheral circuit design is significantly simplified.

2.Applications

- Industrial motor drives
- EV motor drives
- PV inverters
- Energy storage inverters

4. Functional Block Diagram

Bronze Tech -

Single-Channel Isolated Gate Driver

INDEX

L.Features	01
2.Applications	01
B.Description	01
I.Functional Block Diagram	01
5.Product Information	03
6.Pin Configuration and Functions	04
7.Specification Parameters	05
3.Parameter Testing	08
9.Function Description	09
LO.Applications	11
1.Packaging and Packing Information	13
2.Version Description	15

5.Product Information

Part No.	Functions	Isolation Voltage	Operating Temperature	Package	Package Material	Quantity	Marking
BTD3011R	Short circuit protection, soft shut down, primary/secondary side UVLO, voltage regulator for secondary-side power supply	5000Vrms	-40~125°C	SOW-16	Tape & Reel	1500pcs/ Reel	BTD3011

BTD3011x

Single-Channel Isolated Gate Driver

6.Pin Configuration and Functions

NO.	NAME	TYPE ⁽¹⁾	DESCRIPTION	PACKAGE
1	VCC	Р	Primary-side supply voltage	
2	GND	G	Primary side ground	
3	IN+	1	Non-inverted input	
4	IN-	1	Inverted input	
5	FAULT	0	Fault state output	
6	NC	-	No internal connection	VCC 1 16 OUTL GND 2 15 COM
7	NC	-	No internal connection	IN+ 3 14 VISO
8	GND	G	Primary side ground	IN- 4 13 OUTH
9	NC	G	No internal connection	FAULT 5 12 VGXX
10	VEE	G	Connected to IGBT emitter/MOSFET source	NC 6 11 DESAT NC 7 10 VEE
11	DESAT	1	Desaturation monitoring voltage input	
12	VGXX	Р	Bootstrap and charge pump supply voltage source	
13	OUTH	0	Driver output turn-on connection	
14	VISO	Р	Secondary-side positive power supply rail	
15	СОМ	Р	Secondary-side negative power supply rail	
16	OUTL	0	Driver output turn-off connection	
(1) P=Powe	er, G=Groun	d, I=Input, O	=Output	<u>k</u>

7. Specification Parameters

7.1 Absolute Maximum Ratings

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
Input bias pin supply voltage, Vcc	VCC-GND	-0.5	6.5	
Secondary-side total supply voltage, V _{TOT}	VISO-COM	-0.5	30	
Secondary-side positive supply voltage	VISO-VEE	-0.5	17.5	
Secondary-side negative supplyvoltage	VEE-COM	-0.5	15	V
Logic input voltage	IN+, IN- to GND	-0.5	V _{cc} +0.5	
Logic output voltage	FAULT to GND	-0.5	V _{cc} +0.5	
DESAT pin voltage	DESAT-COM	-0.5	V _{TOT} +0.5	
Switching frequency, fs	-	-	75	kHz
Operating junction temperature, T _J	-	-40	150	
Storage temperature, Ts	-	-40	150	°C
Soldering temperature (10s), T∟	-	-	300	
Input power dissipation P _P			188	
Output power dissipation Ps	V _{cc} =5V, V _{τοτ} =28V, T _A =25°C , fs=75kHz		1602	mW
Total IC power dissipation PDJs			1790	
	Human body model (HBM)	±2000		V
ESD	Charged device model (CDM)	±1000		V
Note: The above are stress levels only.Device values.Prolonged operation under the absol		-	-	

cause permanent damage to the devices.

7.2 Thermal Resistance Information

SYMBOL	DESCRIPTION	SOW-16	UNIT
Reja	Junction-to-ambient thermal resistance	46.58	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	10.52	
R _{0JB}	Junction-to-board thermal resistance	31.47	°C /W
τιψ	Junction-to-top characterization parameter	31.47	
ψ _{ЈВ}	Junction-to-board characterization parameter	41.69	

7.3 Recommended Operation Conditions

SYMBOL	PARAMETER	MIN	MAX	UNIT
Vcc	Input supply voltage	4.75	5.25	
V _{TOT}	Secondary-side total supply voltage, VISO-COM	22	28	V
V _{IN}	Logic input voltage	0	VCC	
TA	Operating ambient temperature	-40	125	°C

7.4 Electrical Characteristics

 $T_{\text{A}}\text{=-40}\text{\sim}125^{\circ}\text{C}$, $V_{\text{CC}}\text{=}3.3$ or 5V, VISO=25V, $C_{\text{L}}\text{=}100\text{pF}.$

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	SUPF	PLY CURRENTS					
Ivcc	Primary side quiescent current	V _{IN} =0V	-	-	17	mA	
I _{VISO}	Secondary side quiescent current	V _{IN} =0V	-	-	15		
	PRIMARY SIDE U	INDERVOLTAGE LOCKOUT					
Voni		Clear fault	-	4.3	4.65		
V_{OFF1}	Primary side position supply voltage monitoring threshold	Set fault	3.85	4.2	-	V	
V _{UV, HYS1}		Hysteresis	-	0.1	-]	
	SECONDARY	SIDE POWER SUPPLY			•		
V _{ISO(HS)}	Secondary side positive supply voltage regulation	$21V \leqslant V_{ISO} \leqslant 30V$, $ I_{VEE} \leqslant 1.5mA$	14.5	15	15.5		
		Clear fault	-	13.2	14.2	1	
UVLOviso	Secondary side positive supply voltage monitoring threshold	Set fault	11.2	12.2	-		
		Hysteresis	-	1.0	-	V	
		Clear fault	-	4.92	5.5	1	
UVLOVEE	Secondary side negative supply voltage monitoring threshold	Set fault	4.67	4.90	-	1	
		Hysteresis	-	0.02	-		
		V _{TOT} =15V, VEE-COM=0V	-	0.2	-		
VEE+	VEE source capability	V _{TOT} =25V, VEE-COM=7.5V	-	3	-	mA	
I _{VEE-}	VEE sink capability	V _{TOT} =25V, VEE-COM=12.5V	-	-3	-	1	
	INPUT C	HARACTERISTICS		1		1	
VIH	Positive-going input threshold voltage (IN+, IN-)	-	1.7	2.0	2.3		
VIL	Negative-going input threshold voltage (IN+, IN-)	-	1.4	1.6	1.8	V	
V _{IN_HYS}	Input hysteresis voltage	-	0.1	-	-	-	
IIH	High-level input leakage at IN+	INx=VCC	56	113	165	μA	
		CHARACTERISTICS	1	1			
Іон	Peak output source current	IN+=HIGH, IN-=LOW	-	15	-		
IOL	Peak output sink current	IN+=LOW, IN-=HIGH	-	-15	-	A	
VISO-V _{OH}	Output voltage at high state (OUTx, OUTHx)	Iout=20mA, IN+=HIGH, IN-=LOW	-	-	0.04		
Vol-COM	Output voltage at low state (OUTx, OUTLx)	Iout=-20mA, IN+=LOW, IN-=HIGH	-	-	0.04	V	
R _{GHI}	Turn-on internal gate resistance	I(GH)=250mA, V _{IN+} =5V	-	0.3	1.2		
RLHI	Turn-off internal gate resistance	I(GL)=-250mA, V _{IN+} =0V	-	0.25	1.1	Ω	
		RCUIT PROTECTION	1	1	1	1	
Vdesat	DESAT detection level	DESAT-VEE, VIN+=5V	9.5	10.5	11.5	V	
IDESAT	DESAT sink current	V _{DESAT} =10V, V _{IN+} =0V	4.5	5.5	6.5	mA	
IDES (BS)	DESAT bias current	V _{VCE} -V _{VEE} =4.5V, V _{IN+} =5V	_	-	1	μA	
	SWITCH			I			
t _{PLH}	Propagation delay from INx to OUTx rising edges	C _L =100pF	180	280	380		
t _{PHL}	Propagation delay from INx to OUTx falling edges	C _L =100pF	200	287	359	-	
tr	Output rise time	C _L =10nF	-	50	100	ns	
t _f	Output fall time	C _L =10nF	-	50	100		
t _{FAULT}	Faults propagation delay	-	-	190	750	1	
t _{FAULT-pw}	Fault signal pulse width	-	6.8	10	13.4	μs	
t _{FSSD1}		VGE from 14.5V to 14V	0.0	60	13.7	μ3	
t _{FSSD1}	ASSD rate of change	VGE from 14.5V to 2.5V	1750	2760	3800	ns	
4FSSD2	Common-mode transient immunity	INx fixed to GND or VCC, V _{CM} =1500V	110	2100	5000	kV/µs	

7.5 SAFETY PARAMETERS

Symbol	PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
CLR	External clearance	-	8.5	-	-	
CPG	External creepage	-	8.5	-	-	mm
DTI	Distance through the insulation	-	21	-	-	μm
CTI	Comparative tracking index	DIN EN 60112	600	-	-	V
	Overveltage sategory per IEC 60664.1	Voltage rating ≤ 600Vrms	-	-	-	
-	Overvoltage category per IEC 60664-1	Voltage rating ≤ 1000Vrms	-	-	-	-
		DIN V VDE 0884-11				
CIO	Barrier capacitance, input to output	V _{I0} =0.4Vrms, f=1MHz, sine wave	-	1.2	-	рF
		Test voltage of 500V, T _A =25°C	10 ¹²	-	-	
Rio	Isolation resistance, input to output	Test voltage of 500V, 100°C \leqslant T_{A} \leqslant 125°C	10 ¹¹	-	-	Ω
		Test voltage of 500V, T _A =150°C	10 ⁹	-	-	
-	Pollution degree	-	-	2	-	-
		UL1577				
Viso	Withstand isolation voltage	$V_{TEST}=V_{ISO}$, t=60 sec(qualification); $V_{TEST}=1.2 \times V_{ISO}$, t=1 sec(100% production)	-	5000	-	Vrms

8.Parameter Testing

8.1 Propagation Delay

Figure 1. Input and Output Propagation Delay

8.2 CMTI

Figure 2. Simplified configuration of CMTI test

9.Function Description

9.1 Input Characteristic

The BTD3011x input pins are completely galvanic isolated from the secondary side. It adopts TTL level compatible design and supports 3.3V and 5V level inputs, which makes the chip easy to be controlled by a variety of micro controllers. Internal filtering circuit and input signal high/low level hysteresis are provided to improve the interference-immunity. The logic input pin IN+ has internal pull-down and IN- has internal pull-up, which ensures that the output pin OUTH is in a high impedance and OUTL is low when the chip is powered on, preventing the power devices from malfunctioning.

9.2 Drive Output Characteristic

The BTD3011x output stage utilizes rail-to-rail output. Both the high side and low side switches use NMOS for high current output capability. In order to drive the high side NMOS, bootstrap power supply is used. It is necessary to connect a capacitor CGXX between the OUTH pin and the VGXX pin.

Figure 3. Dual NMOS drive output

9.3 Secondary Side Voltage Regulator

BTD3011x integrates a voltage regulator for secondary side supply internally, and automatically assigns positive and negative voltages according to the full voltage (VISO-COM) which is provided externally.

1) VISO-COM \leq 14V: The voltage is assigned to both positive and negative supply to ensure that the IGBT gate have negative drive voltage available during power on.

2) 14V < VISO-COM \leq 17V: The positive supply voltage at is kept 11.3V and the excess voltage is assigned to the negative supply.

3) 17V< VISO-COM \leq 21V: The negative supply voltage is kept at 5.3V and the excess voltage is assigned to the positive supply.

4) 21V <VISO-COM: The positive voltage is maintained at 15V, the excess voltage is assigned to the negative supply.

If the source or sink current of the VEE pin exceeds the limitation 3mA, VEE transits to constant current output mode and the voltage regulation is lost. Please avoid overload.

Figure 4. Voltage regulation characteristic

9.4 Undervoltage Lock Out Protection

The primary-side power supply, the secondary-side positive and negative power supply of the BTD3011x have an undervoltage lockout (UVLO) protection to prevent the occurrence of insufficient gate drive voltage. When the power supply voltage falls below the protection threshold, the driver IC will turn off the output to protect the power semiconductor device. When the power supply voltage returns to the recovery threshold, it resumes the output. To prevent repeated actions near the protection threshold, a hysteresis is applied. In order to avoid undetermined output state after power-on, the chip will first enter the undervoltage protection state, with the output pin OUTH in high-impedance state and OUTL in low-level until the power supply voltage is completely established and then start working.

9.5 Short Circuit Protection and Soft Shut Down

BTD3011x's secondary side integrates desaturation short-circuit protection. When there is a short-circuit current flowing through the CE/DS terminals of the IGBT/MOSFET during the turn-on transient, the forward voltage rises steeply, resulting in a sharp increase in the instantaneous power consumption of the IGBT/MOSFET and overheating damage to the IGBT/MOSFET. The voltage between CE/DS can be detected by the DESAT pin. When the voltage at the DESAT pin exceeds the fault threshold voltage, the driver output pin immediately shuts down the power device by means of soft shutdown (SSD), the FAULT pin is pulled down to GND to assert a fault. When the power device is turned off, the MOSFET Q_{CE} is turned on so that DESAT is shorted to COM to ensure that short-circuit protection will not be triggered. When the power device is turned on, Q_{CE} is turned off.

As the short circuit current is much higher than that during normal operation, to shut it down, a large di/dt can be generated, resulting in a high voltage spike. To effectively avoid the voltage spike, the driver activates a specific circuit after a short-circuit is detected, which samples and compares the gate voltage to a pre-configured soft transient reference, so that the device is shut down in a soft way.

Figure 5. Short circuit protection circuit

Figure 6. Experimental waveform of soft shut down

IN+	IN-	OUTH	OUTL						
Н	L	Н	Hi-Z						
Н	Н	Hi-Z	L						
L	L	Hi-Z	L						
L	Н	Hi-Z	L						
Hi-Z: High impedance	Hi-Z: High impedance								

9.4 Input and Output Logic Table

10.Applications

The following sections introduce the basic typical application of Bronze Technologies driver ICs, which is for reference only. In practical application, users need to verify and test its applicability according to their own design requirements to confirm the system functions.

10.1 Input and FAULT Pins

Depending on the input voltage level of the input, a resistor divider can be used. When 5V logic PWM signal is used as input, it is recommended that R1=100 Ω and R2=47k Ω . In order to improve the immunity to high-frequency interference, it is recommended that a filtering capacitor CF=100pF be connected to GND, the effects of high-frequency interference and delay should be taken into consideration in selecting this parameter. The FAULT pin adopts open drain output, it is necessary to connect a pull-up resistor Rso to the power supply VCC, it is recommended that Rso=4.7k Ω .

10.2 Power Supply Pins

In order to ensure the stability of power supply, it is recommended to add suitable block capacitors between power supply pin and ground: capacitors C1=4.7uF and C2=470nF in parallel between the primary power supply VCC-GND, two capacitors $C_{521}=C_{522}=4.7\mu$ F in parallel between the secondary power supply VISO-VEE, two capacitors $C_{521}=C_{522}=4.7\mu$ F in parallel between the secondary power supply VEE-COM. Typically the capacitance of $C_{521}+C_{522}$ and $C_{521}+C_{522}$ should be at least 3μ F corresponds to 1uC total gate charge (QGATE). A charge pump circuit is integrated on the secondary side, a bootstrap capacitor needs to be connected between VGxx to OUTH with CGXX=10nF.

10.3 Drive Output Pins

The gate of the power device is connected to the OUTH pin via the turn-on resistor R_{GON} and to the OUTL pin via the turn-off resistor R_{GOFF} . In any case, the power consumption and temperature of the gate resistor need to be taken into account properly.

To ensure a stable gate voltage and to limit the collector or drain current during a short circuit, the gate is connected to the VISO pin via a Schottky diode D_{STO} (e.g. PMEG4010).

To avoid false conduction of the power devices during system power-up, a pull-down resistor $R_{DIS} = 10 \text{ k}\Omega$ can be connected between the gate and the COM pin.

10.4 DESAT Pin

DESAT short-circuit protection can be achieved using either diode or resistor string. Figure 7 shows the use of diodes D_{VCE1} and D_{VCE2} for power device short-circuit desaturation detection. To ensure electrical insulation, two SMD package diodes (e.g., STTH212U) are typically used. the DESAT pin is connected to the VISO pin via resistor R_{RES}. When the power device is on, the current from the power supply VISO flows through RRES, the diodes and the power device into the VEE pin. At power device short-circuit desaturation, the diodes switch off and VISO charges C_{RES} through R_{RES}. In this configuration, the short circuit response time is determined by R_{RES} and C_{RES}. C_{RES}=33~330pF and R_{RES}=24~62k Ω are typically selected. Both CRES and R_{RES} can be adjusted if the desaturation is too sensitive or the short circuit duration is too long.

Figure 8 uses resistors R_{VCE2} - R_{VCE11} to detect short-circuit desaturation of power devices, the resistor value of R_{VCE2} - R_{VCE11} should be selected so that the current flowing through the resistor is limited to between 0.6mA and 0.8mA under the maximum DC bus voltage. E.g. the total resistance value of R_{VCE2} - R_{VCE11} should be approximately 1M for a 1200 V power device, with all resistors having a value of 100k Ω and in a 1206 package. In each case, the resistor string need to ensure sufficiently wide creepage distances and electrical clearances. Low leakage current diodes D_{CL} (e.g., BAS416) can keep the short-circuit response time stable over a wide range of DC bus voltages. The response time can be set by R_{VCE} and C_{RES} (typical values are 120k Ω and 33pF for 1200V devices, respectively). C_{RES} can be increased if short circuit detection is too sensitive. The maximum short circuit duration must be limited to the maximum value specified in the device datasheet.

Figure 7. VCE detection using diode

Figure 8. VCE detection using resistor string

11.Packaging and Packing Information

11.1 Package Identifier

Bronze Tech

Note: 1) Legend unit: mm.

Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Bronze Technologies recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure.Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

www.qtjtec.com

11.2 Packing Information

Note: 1) Legend unit: mm.

REEL DIMENSIONS

ITEM	FOOTPRINT
Reel Diameter	13 inches
Reel Width(W1)	16mm

12.Version Description

REVISION	NOTES	DATE
Rev.0.0	Released datasheet	05-Apr-2023
Rev.0.1	Content optimisation	07-Jun-2024

IMPORTANT NOTICE AND DISCLAIMER

Bronze provides technical and reliability data(including datasheets), design resources(including 3D model, reference designs), application or other design advice, tools, safety information, and with all faults, and disclaims all warranties. Express and implied, including without limitation any implied warranties of merchantability, fitness for a particular purpose or non-infringement of third party intellectual property rights.

These resources are intended for skilled developers designing with bronze products. You are solely responsible for

(1) selecting the appropriate bronze products for your application

(2) designing, validating and testing your application

(3) ensuring your application meets applicable standards.

Bronze reserves the right to modify data, texts and materials at any time, these resources are subject to change without notice. Please visit the bronze website <u>www.qtjtec.com</u> account for the latest information.Bronze grants you permission to use these resources only for development of an application that uses the bronze products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other bronze intellectual property right or to any third party intellectual property right. For any claims, damages, losses and costs arising from using of these resources,

bronze disclaims responsibility for, and you will fully indemnify bronze and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. And bronze have the right to recover losses caused by infringement of intellectual property rights.

Bronze Technology Group | Shenzhen bronze Technology Co., Ltd

© Shenzhen bronze Technology Co., Ltd ⊕ www.qtjtec.com ☎ +86 0755 33379866 ⊠ support@qtjtec.com

